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Introduction 

In this paper, we derive a general formula for the luminos- 

ity from two colliding beams. The two beams are assumed to 

cross at some small angle with unequal cross sections. Also, 

30th beams are taken to be not necessarily round. Gaussian 

distribution is assumed in any direction. The following cases: 

(a) bunched beam vs. unbunched beam, and (b) two unbunched beams, 

are given special consideration. 

An application is made to the case where the cross section 

of the beams increases quadratically with the distance. The 

effect of the dispersion is also taken into account for one 

special case. The behavior of the luminosity is finally discussed. 

The main parameters in the discussion are: the interaction length, 

the crossing angle and the ellipticity of the interaction cross 

section. 

General Analysis 

The basic formula for the luminosity per crossing is 1 

L = !d+:i-fF (1) 

where F is the overlapping integral 

F= 
! 

dtdxdydz d;+d; I;+-; Ig+(;,;+,t)g (;;,;-,t). (2) 

dt is the element of time, dxdydz is the element of volume, s and 

; are the position and velocity vectors of a particle. The signs 

+ and - are used to distinguish between the two beams. The dis- 

tribution functions are normalized to unity, i.e. 

\g$,;,,t)d;d;, = 1. 

i 
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b/e have three cases: 

(a) 30th beams are unbunched. The tctal number of particles 

in sac:? Se27 is !I+. The fnequencg of encounter f is the Lowest 

revolution frequency. 

(5) ,Zne beam is unbunched (+) and one bunched (- 1. N, is 

the total number of particles in the unbunched beam, :: ?he 

number ,of particles in each bunch of the bunched beam. f is the 

frequency of encounters between the unbunched beam and the bunches 

of the ,other beam. 

(c) 30th beams are bunched. The number of particles in each 

buxh i :,i_. f is the frequency cf encounters between bunches. 

Each beam (+) is moving in the direction s* (see Fig. 1). 

The angle between the two directions is a<<l. All the particles 

are assumed to have the speed of light c. The transverse coor- 

dinates are x, and zi-. We chose x = x+ = x to be the direction 

perpendicuiar to the plane of crossing. It is also assumed that 

around :he crossing point there is a space of total length P, free 

of any Tagnet. 

Let us take gaussian distributions of the rarticles Ian the 

transverse pianes, i.e. In x,, r?, 8, and i,. !tIe have 

RX’RZ.G(~+FC) 
,s+ = - 

411*02 * 2 
H*(s,+ct) < 

XkUZi 

-x2+(B Bi 2 2 2 
li Xi c) zf+( R,, $1 

. exp -2 
c - & + - & 

-j- 
(?) 

-4 

where the Go 's are the standard deviations of the gaussian distri-- 

butions. The;] are functions of s,. 
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The relation between x,, z+, s* and the main reference frame 

coordinates x, z and 7 are 

X+ = x- = x 

s, = y cosoL k z sinE 2 2 

z?I = z ~0s: i y sin: . 

In the following, since we are assuming the crossing angle c1 

is very small, we shall approximate cosu -1 and sing -CL 2 2 2’ 
H, is the longitudinal distribution function. We have two 

cases : 

(a) llnbunched beam, for which we take a uniform distribution. 

H, is a constant equal to the inverse of the main orbit circum- 

ference 2aR?. 

(b) Bunched beam. We take a gaussian distribution 

- 

exp -$ 
1 

(s*ict )2 
2 

Oil+ 1 
H,(s+Tct) = 1 

(2777 5Rf 

where 0 I* is, obviously, taken to be a constant. 

At this point, the following approximation, valid in the limit 

of small crossing angle, is made 

IV+-V-1 = zc. 

This approximation allowed the integration over ;+ and G -. We obtain 

i H+(s+-ct)H 
F=.w?..e 

(S +ct) - - 

21r2 _’ u x+“x-oz+~z- 
dtdxdydz * 

7 1 r x: + xf zf g 7,. 
exp <; -- ! - _ - _ 

21 2 
i i"x+ CT:- + o;+ + G;- 1: .A 
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The integraticn over x is also easily done 
-- 

2 

F=A!& 
I! ~z+uz- 

E+(s+-ct),'l (s fctjdtdydz . - - 

(2nj2 - 

1 pf 
z2 -jY 

s exp i -;i "- + _ d 1 
i LOz+ j-j 1.. 

J 

When we are performing the integration over the time t, we 

again have to consider the three cases. 

(a) Two unbunched beams. The integration is rather trivial. 

We obtain 

2 
F= 2 

5 1 
(CJ x-b 

CI 

+ +-* ;+( 5 + $-,rdydz 

0 

(4) 

(2~)' R ? '+ '- 
0 

where R 0 is smallest between R, and R -. 

(b) One bunched beam and one unbunched beam. Also in this 

case, the integration is obvious. In the limit the bunch length 

2cTL- ;s very small compared to the circumference 2nR+, we have the 

same result shown by (4) with R 
0 

= R,. 

(c) Two bunched beams. The integration can be done also in 

this case, though it is more complicated. !;Te leave this case out 

of the present analysis since it has alread:? received enough 
1 attention . 

We shall concentrate on the first two cases (a) and (b), 

which, as we have seen, have the same overlappinp integral which is 

given by (4). Observe that the dependence of ox and 0s on y and z 

prevents further integration in general. Nevertheless, in the limit 
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c,f -7ery small angle crossing, we can assume therr depend cnly 

on :i. In this case the intepration over z can be done as shown 

ir .kppendix A. 

.:Je have 
2 d a ” 

+e/2 2(U zf+uz~) 

1 
e 

F= / 
6~ 

2712 
1 1 

R 
0 i (0 

-z/2 
2to qT (3x:tox;)7 z+ z- 

(5) 

A Special Case 

Let us apply (5) to the following special case. Introduce 

the beta-function S(y) and the dispersion function D:(y) and let 

'us write 

u2 = ; 6(y) + [S.D(y)12 

which applies for either x or z and for either t or -. ITE is the 

emittance which includes 95% of all the beam (see Appendix l3), 

and 6 is the standard deviation of the relative momentum (Ap/p) 

distribution, which is assumed to be gaussian. 

'Take the following expressions for B(y) and D(y) 

3 = D' y 

where 6* is the value at the crossing point and D' is a constant. 

Intrcduce the average beam current, I = IJec/27iR, and the integral 

_ n2u2 
5 

X(5,7,w) = / 
e 4(1+u2) du 

*’ 1 1 
O (l+u2)F (ltw2u2)T 

(6) 
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then, finally, we have for the luminosity, from (l), 

L = 21+1- K(C,n,w) 
ne2c Jw 

(7) 

where 

/2 
n = a/g 

z 

- 
/ BxAz 

0 = 
I- *XBZ 

t 
9. 
-r A; F 

and * 
E+q. + E-B- A=- 

72 
(D+ + D;')'. 

Observe that A is the quadratic sum of the beam sizes at the 

crossiw point, i.e. 

w2 *2 
A=o++a . 

Also, in the case DL = D' = 0, B is the quadratic sum of the 

divergences $I (see Appendix B) at the crossing point, i.e. 

v;2 *2 
B=$++I$ . 

In the case both beams are round but not necessarily with the 

same cross section, then w = 1. If, in addition, the two beams 

have also the same cross section and there is no dispersion 
, 

(D = O), then 
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and 

JA 
x z 

= 20f2iB* = E/3. 

In this very special case, our expression for the luminosity 

reduces to the one obtained by E. Keil 2 . 

Observe also that with our notation the interaction length k 

enters the expression of the luminosity (7) only at the upper 

limit of the normalized overlapping integral (61, and that the 

crossing angle a enters the same expression at the shoulder of 

the exponential inside the normalized overlapping integral. 

We have already seen that, in the case of round and equal 

beams, the quantity Jm at the demominator of the right hand 

side of (7) is the beam emittance and, henceforth, an invariant. 

This is closely true also for unequal and not-round beams. Thus 

the behavior of the luminosity is entirely described by the nor- 

malized overlapping integral (6) with the three normalized param- 

eters c,n and 0. The first of these parameters, <, is the nor- 

malized distance from the crossing point; the second one, n, is 

the normalized crossing angle, and w is a measure of the "ellip- 

ticity" of the interaction. !;Je have seen that w = 1 for round 

beams; also w > 1 when the cross section of the interaction is 

wider on the plane of crossing than it is on the mid-plane, and 

vice versa. 

The "saturated" luminosity is obtained by setting 5 = m. Let 

us call 

Km = K(S = m,n,~). 
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This parameter is shown in Fig. 2, versus n for some values 

of 0. The luminosity decreases monotonicaily ?lith n and o. 

The ration K/K_ is shown in Figs. 3, 4 and 5, versus 5 and 

for some values of w. 

From the experimental apparatus point of view, an important 

parameter is the actual length where almost all the luminosity 

is concentrated. We define 5, to be the normalized full length 

around the crossing point including 99.0% of all the luminosity. 

5, is shown in Fig. 6, versus n and again for some values of w. 

The actual interaction length decreases monotonically with n and w. 
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Appendix A 

We assure that 0 x and ~z 

perform the integration over 

where 

1 
2 

i 

i 

2 
Z+ -- _ 

2+ 
e uZ+ 

depend crly on y. We want t 0 

z at the rieht hand side of (4) 

2 \ z 8, 

“ITdz = i 

-1, 
2 

= je dz 
J 

(Az+B!J j2 t c2y2 
dz 

B=& 

i 

c = a 

(U 2 
2-k + u;',+ 

as it is easy to verify. 

The same integral then becomes 

J27 
-Fe 

-$ &2 

,which leads to (5). 
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Appendix E 

Consider a Particle which has an upright ellipse described 

by the quation 

12 2 

9x +XFE 
6 

as tra,:ectory in the (x,x')--phase Plane. e is a constant, 

actuall:: the invariant action of the trajectory. The trajectory 

is closed and the area of the ellipse is ITS. 

Consider a beam which has gaussian distribution in either 

direction x and x' , centered to x = x' = 0. The distribution 

the invariant e then must be 

-E/E0 

f(E) = e E 
0 

in 

where f 
J 

(c)de = 1 and e. is a measure of the width of the distri- 

bution. 

We ::ant to define the emittance TE max which includes only 

the fraction 1 - p, (P < l), of the beam. IWe have 

E 

1 
r 

0 J 

max --E/E 
e 'de=l-p 

0 

from which 

E max 
= -E o leap 

The distribution in x and x' is 

Bx12 Il%PI 2 + 

f(x,x') = E LlogpI c emax i ' ) 

max 
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Perform the rntegration over x' to jet distribution over 

x oniy, and vice versa 

I;04 x; [ IlO~P! 3xf2 7 
f(x) = E dxl [logpj e max i i e Emax 

max 
ii 1 

Ilo!% Bx' 
2 

f(x'j = l$ckxd. 'max i 
J 

~I~OEd x3* -j 
max e dx i. 

max 
i J 

From the above distributions we derive the relationships 

between the standard deviation of the distribution in x, o, the 

standard deviation of the distribution in x', IJJ, the fraction 

of excluded beam, p, and the corresponding beam emittance n E max 

2 
II E max = 2% lloepl TT 

= 2tJ23 llofip/ TT . 

The relation between u and ti is 

a = BqJ . 

For instance, the emittance which includes 952 of the beam 

(p = 0.05) is 

71 E max =6$. 
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